Configuring PSx tetrahedral clusters in Li-excess Li7P3S11 solid electrolyte
نویسندگان
چکیده
منابع مشابه
Mechanical properties of the solid Li - ion conducting electrolyte
Li0.33La0.57TiO3 (LLTO) is a potential Li-ion conducting membrane for use in aqueous Li-air batteries. To be in this configuration its mechanical properties must be determined. Dense LLTO was prepared using a solidstate (SS) or sol–gel (SG) procedure and was hot-pressed to yield a high relative density material ([95 %). Young’s modulus, hardness, and fracture toughness of the LLTO-SS and sol–ge...
متن کاملToward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface
Solid-state batteries are a promising option toward high energy and power densities due to the use of lithium (Li) metal as an anode. Among all solid electrolyte materials ranging from sulfides to oxides and oxynitrides, cubic garnet-type Li7La3Zr2O12 (LLZO) ceramic electrolytes are superior candidates because of their high ionic conductivity (10-3 to 10-4 S/cm) and good stability against Li me...
متن کاملSelf-Configuring Heterogeneous Server Clusters
Previous research on cluster-based servers has focused on homogeneous systems. However, real-life clusters are almost invariably heterogeneous in terms of the performance, capacity, and power consumption of their hardware components. In this paper, we describe a self-configuring Web server for a heterogeneous cluster. The self-configuration is guided by analytical models of throughput and power...
متن کاملSimulating Li-ion battery ageing through solid electrolyte interphase growth in graphite/NMC cells
متن کامل
Interface-enhanced Li ion conduction in a LiBH4-SiO2 solid electrolyte.
We have developed a fast solid state Li ion conductor composed of LiBH4 and SiO2 by means of interface engineering. A composite of LiBH4-SiO2 was simply synthesized by high energy ball-milling, and two types of SiO2 (MCM-41 and fumed silica) having different specific surface areas were used to evaluate the effect of the LiBH4/SiO2 interface on the ionic conductivity enhancement. The ionic condu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: APL Materials
سال: 2018
ISSN: 2166-532X
DOI: 10.1063/1.5011105